A Survey On Clustering Techniques For Movie Recommendation

B.Rajeswari¹, Dr. S. Shajun Nisha², Dr. M. Mohamed Sathik³

¹Research Scholar PhD, PG & Research Department of Computer Science, Sadakathullah Appa College, Tirunelveli, India. Affliation of Manonmaniam Sundaranar University 627012, Reg.No:18211192162020

²Assistant Professor & Head , PG & Research Department of Computer Science, Sadakathullah Appa College, Tirunelveli, India.

³Principal, PG & Research Department of Computer Science, Sadakathullah Appa College, Tirunelveli, India.

Abstract:

With the big data era, the amount of information accessed in everyday is increasing in most of the industry. All these data do not possess useful information and may be utilized if it has suitable information. It is necessary to investigate, and extract significant learning from such gigantic amount of data. Data mining is an essential method in obtaining important knowledge from huge set of data. Recommendation system helps humans in making decisions. Clustering is one of the important steps in data mining which is used to build efficient recommendation system. Clustering reduces the complication of data mining that has different attributes of many types of large database. Thus unique computation is required for each clustering approaches. In recent years, variety of clustering algorithms have been emerged to satisfy the above requirements and found to be successful when applying to practical recommendation issues. The comprehensive reviews of various clustering techniques that are utilized in different recommendation systems are discussed in this survey.

I. INTRODUCTION

Information sources such as movies, audio, image and text are used as a technological tool to share information in order to satisfy customers requirements. With the development of technology and increased knowledge dissemination, customer's needs become more complex. Service providers have found it difficult in fulfilling the customer's need to offer services and products as there exists an active competition in business. Information filtering systems such as recommendation system

are helpful for users in choosing their preferences according to their consideration and behavior. They started to emerge as a research topic in the late twentieth century. With the ever increasing number of options available online, recommendation system are becoming indispensable. Further the system does not require all the details due to the explosion of overwhelming information and acts as a decision making tool in assisting humans without internet.

Clustering is an unsupervised learning based data mining which is used to group samples of similar and dissimilar data types. Even though it was not broadly studied, it is a research subject in recommendation system area. The drawback of existing recommendation systems such as content based recommendation, collaborative filtering and knowledge based system are overcome by clustering approach. Cluster based and cluster only are the two major approaches of clustering in recommendation system domain. This survey work is emphasized on various clustering techniques involved in various applications of recommendation system.

II. LITERATURE SURVEY

QUANTITATIVE ANALYSIS

Reshma M. Batule et al [2016] presented a hybrid recommendation system based on collaborative filter and clustering. The overview of the combined techniques is also presented to prove the proposed method as efficient recommendation system.

Mingjing Du et al [2016] proposed a novel DPC-KNN algorithm to overcome the loss of some clusters of conventional DPC structure. To preprocess real time high dimensional data, PCA is integrated with the proposed method. This method is compared with spectral clustering and k-means algorithm to show its effectiveness in terms of accuracy.

Bhagyashree Pathak et al [2017] made a survey on five clustering algorithms for information extraction in data mining. The basic study of each algorithm is described and comparative analysis is also done.

George Lekakos et al [2008] proposed a movie recommendation system based on hybrid filtering methods such as collaborative filtering and content based filtering to monitor. The performance of the proposed method is evaluated by measuring prediction accuracy, predictive coverage and prediction run time.

Eugene Seo et al [2010] made a comparison between k-means and SVM classifier based movie recommendation system and the experiment is conducted on Netflix dataset. The dataset consists of 480 thousand training data and 2.8 million of test data. The performance of SVM classifier is found to be superior to k-means.

Sobia Zahra et al [2015] proposed a novel centroid selection method in k-means clustering to improve the accuracy of movie recommendation system using MovieLens, LastFM and FilmTrust

dataset. A comparative analysis is made with FCM and EM to prove the robustness of the proposed approach.

Mohammed Nazimuddin et al [2009] presented a hybrid recommendation system based on diverse module selection method to choose different items between the recommended modules of collaborative filter and fed as input to content based filter.

Pei-pei Wang et al [2019] proposed a key user identification strategy based on density peak cluster method. This recommendation system identifies each significant user as key user. In this way the accuracy and diversity performance of recommendation system is improved.

Shreya Agrawal et al [2017] proposed a hybrid recommendation system based on content based filter, collaborative filter using SVM classifier which is enhanced by GA. Comparatively the proposed method has better accuracy and diversity over individual approach.

Gilda Moradi Dakhel et al [2011] developed a new recommendation algorithm based on k-means clustering and voting algorithm to improve the performance of existing collaborative filtering algorithm. The dataset used is MovieLens.

Chih-Lun Liao et al [2016] developed a dimensionality reduction based novel self constructing method to improve the efficiency of collaborative filtering based recommendation system. Re-transformation approach is used to speed-up the recommendation process.

Jinyin Chen et al [2017] developed an enhanced spectral clustering based recommendation system to overcome the existing sparsity problem. The recommendation over most frequent pair of clusters is generated to reduce the computation time.

Zhou Zhao et al [2017] represented a multi model neural network network for developing heterogeneous social aware recommendation system by using text description, movie image, user ratings and social relationship. A real time social aware large dataset is used to evaluate the performance of the system in terms of sparsity problem.

Siti Rofiqoh Fitriyani et al [2016] proposed a mini batch k-means algorithm for topic recommendation of social media. The accuracy has to be compensated to increase the computation time.

Donghui Yan et al [2018] developed spectral clustering based novel system for distributed data to reduce the communication traffic with less computation time. Experiment was conducted on UV Irvine dataset to show its accurate performance and privacy concern.

Ali Feizollah et al [2014] used MalGenome dataset to measure the performance of k-means and mini batch k-means algorithm. This paper is intended to analyze the network traffic for detecting malwares applications in mobile phones.

Webology (ISSN: 1735-188X) Volume 18, Number 6, 2021

Jiang Wang et al [2018] proposed two stage clustering technique (density and distance based kmeans clustering) to overcome the challenges faced conventional spatial clustering approach. The effectiveness of the proposed approach is verified with DBSCAN.

Minh D. Nguyen et al [2019] proposed density based clustering approach using spatial textual data of social media to detect geo-tagged record of single data type. The proposed method performs well in terms of f1 score and its derivatives.

Samina Kausaret al [2018] developed a personalized e learning system to obtain information from educational dataset using CFSFDP-HD method. The learning capability can be improved by identifying optimal settings.

Zheng Cao et al [2010] proposed an efficient video similarity search method where the feature extraction is done by image attribute code based on spatio-temporal statistics for large dataset. As the implementation is easy, it can be employed in storage gadgets for video search.

Veena K.M. et al [2017] modified the traditional CA algorithm with density weighted FCM approach to estimate the membership function thereby enhancing the web based recommendation by fetching most frequently used web sites for the users.

S.Ephina Thendral et al [2016] proposed cross domain algorithm that focuses on transferring the user's knowledge from high rated site into sparse domain recommendation system. Thus the proposed method associates the user suggestion on different domains.

Mingjing Du et al [2017] proposed a new DPC-MD clustering algorithm for real time data clustering. This new similarity measurement approach avoids changes in feature and parameter variation and outperforms the existing methods.

Juha Vesanto et al [2000] developed a two stage clustering approach that consists of agglomerative and partition based clustering in a large dataset. This approach performs better than direct data clustering in reducing the computation time.

Sueli A. Mingoti et al [2006] made a comparison between hierarchical (SVM) and nonhierarchical clustering (Fuzzy c-means) and conclude that non-hierarchical approach has good stability and performs well for different dataset.

Kashif Hussain Memon et al [2018] proposed a generalized KWFLICM algorithm for segmenting M-dimensional input images that are highly corrupted by noise. The experimental verification has been done on real time data to show its effectiveness.

S. V. Vimala et al [2019] developed KLD-FCM clustering method to enhance the stability and robustness of existing collaboration filtering based recommendation system. MAE, RMSE, Recall, Standard Deviation and Accuracy are the experimental measures involved in this paper.

Webology (ISSN: 1735-188X) Volume 18, Number 6, 2021

Hamidreza Koohi et al [2016] proposed fuzzy c-means clustering for user defined collaborative filter which is a novel approach whose performance is superior to other clustering methods for movieLens dataset. This is further enhanced by the combining CoG defuzzified cluster and Pearson correlation coefficient.

QUALITATIVE ANALYSIS

S. No	Authors & Year	Method used	Advantages	Disadvantages
[1]	Reahma M.	Combination of	Relatively good	increased
	Batule, S.A Itkar,	clustering and	accuracy and low	complexity,
	2016	collaborative	cost.	dependent on
		filtering		human ratings,
		C		limited scalability
				for large datasets
[2]	Mingjing Du,	DPC-KNN-PCA	Outperforms well	Does not perform
	Shifei Ding,		for UCI dataset and	well when there is
	Hongjie Jia, 2016		low dimensional	an accumulation of
			dataset.	focuses forming
			Performs well for	vertical streaks in
			real time data.	dataset.
				Need improvement
				on manifold dataset.
[3]	Bhagyashree	Hierarchical	Versatility, easy	No back tracking
	Pathak, Niranjan	methods,	analysis, less	capability, data have
	Lal, 2017	Partitioning	processing time,	order dependency;
		methods, Density	linear complexity	work with
		based clustering,		mathematical
		Grid based		model, high
		clustering, Model		computation cost.
		based clustering,		
		Soft computing		
		clustering		
[4]	George Lakekos,	Content based	Comparatively the	Execution time is
	Petros Caravelas,	filtering,	mean absolute error	high, accuracy
	2008	collaborative	is reduced with	depends on weight
		filtering	100% accuracy.	of threshold value
[5]	Eugene Seo and	SNM and k-means	Prediction accuracy	Computation time is
	Ho-Jin Choi,	clustering	of SVM is good.	long.
	2010		RMSE is not	Some values get
			affected.	missed with large
				dataset.

[6]	Sobia Zahra,	Novel centroid	Cost effective,	The performance
	Mustansar Ali	selection based k-	accurate prediction,	depends on number
	Ghazanfar, Asra	means clustering	less MAE	on clusters and
	Khalid,	C		decreases with
	Muhammad			increasing cluster
	Awais Azam,			number.
	Usman Naeem,			
	Adam Prugel-			
	Bennett, 2015			
[7]	Mohammed	Diverse item	Good prediction	When number of
	Nazimuddin,	selection algorithm	accuracy.	active user ratings
	Jenu Shrestha,		Diverse item	reduced, the
	Geun-Sik Jo,		recommendation	performance will
	2009		enhances the	degrade.
			content based filter.	
			Cold start problem	
			is eliminated.	
[8]	Pei-pei, Pei-yu	Density peak	Key users are	When number of
	Liu, Ru Wang,	clustering based on	effectively	key users increased,
	Zhen-fang Zhu,	key user	differentiated from	diversity becomes
	2017	determination	false users.	bitter.
		method.	Highly accurate	
		HHM method	Algorithm	
			complexity	
			reduced.	
[9]	Shreya Agrawal,	SVM, Genetic	Less computation	Memory
	Pooja Jain, 2017	Algorithm	time.	requirement is high.
			Accuracy, diversity	Verified for single
			and quality are	dataset [movieLens]
			improved.	only.
[10	Gilda Moradi	k-means clustering,	More accurate	Consumes more
	Dakhel,	Minkowski distance		time
	Mehregan	based voting		
	Mahdavi, 2011	algorithm		
[11	Chih-Lun Liao,	Self constructing	Recommendation	Same number of
	Shie-Jue Lee,	clustering algorithm,	time is reduced.	cluster is used for
	2016	re-transformation	Efficiency is	grouping.
		approach	improved.	Practical application
			Clusters are formed	is restricted to
			automatically and a	specific dataset.

		[• • •	
			pre-determined	
			number of clusters	
			provided by the	
			user is not required.	
[12	•	node2vec algorithm	Sparsity &	The parameter
	Yangyang Wu,	based spectral	information loss	variation has impact
	Lu Fan, Xiang	clustering	problems are	on accuracy.
	Lin, Haibin		solved.	
	Zheng, Shanqing			
	Yu, and Qi Xuan,			
	2017			
[13	Zhou Zhao, Qifan	Random walk based	Performs better	The proposed
	Yang, Hanqing	learning method	than existing	method cannot be
	Lu, Tim		system by solving	directly applied for
	Weninger, Deng		sparsity problem.	learning the
	Cai, Xiaofei He			multimodal ranking
	and Yueting			metric.
	Zhuang, 2017			
[14	-	Mini batch k-means	The whole dataset	Accuracy is slightly
	Fitriyani, Hendri	algorithm	is not required to	less than k-means
	Murfi, 2016		determine the	method.
			centroid.	
			Much faster than	
			standard algorithm.	
[15	•	Distortion	Speed increased by	There was little loss
	Yingjie Wang,	minimizing local	twice.	of information.
	Jin Wang,	transformations	Privacy concern.	
	Guodong Wu,		Feasible.	
	and Honggang			
	Wang, 2018			
[16		k-means and mini	Mini batch k-	Does not suits for
	Nor Badrul	batch k-means	means algorithm	large dataset.
	Anuar, Rosli	algorithm	has good accuracy	
	Salleh and Fairuz		and less	
	Amalina, 2014		computation time.	
[17	• •	Density and distance	The clusters with	Cores and noise are
	Cheng Zhu, Yun	based k-means	different shapes	difficult to
	Zhou, Xianqiang	clustering technique	and densities are	determine.
	Zhu, Yilin Wang		effectively	
			identified.	

	And Waiming		Data size and	Variation of local
	And Weiming		dimensions are	
	Zhang, 2108			point in decision
			scaled efficiently.	graph.
				Results are unstable.
[18	Minh D. Nguyen	Fuzzy DBSTexC	Superior	Computationally
	and Won-Yong	algorithm	performance over	complex.
	Shin, 2019		existing DBSCAN	
			method.	
[19	Samina Kausar,	Clustering by fast	Efficiently analyze	The performance of
	Xu Huahu,	search and finding of	big data to make	system depends on
	Iftikhar Hussain,	density peak via heat	robust educational	student's
	Zhu Wenhao and	diffusion method.	system.	collaboration.
	Misha Zahid,		Accurate clusters	
	2018		are formed in less	
			time.	
[20	Zheng Cao, Ming	Clustering index	Twenty times faster	The algorithm needs
	Zhu, 2010	table search method.	than other methods.	frequent updating
			The search	whenever new
			efficiency is	videos are added.
			improved for large	
			database.	
[21	Veena K.M,	Density weighted	Advantages of both	Data have order
	Radhika M.Pai,	FCM	hierarchical and	dependency.
	2017		partition clustering	Computation time is
			are utilized.	more.
[22	S.Ephina	Cross domain	95% of accuracy is	Does not suits for
	Thendral and	collaborative	achieved.	large dataset.
	C.Valliyammai,	filtering.		
	2016	Hierarchical		
		agglomerative		
		cluster.		
[23	Mingjing Du,	DPC-MD clustering	Highly stable.	There is a need to
	Shifei Ding and	algorithm.	Less sensitive to	know parameter
	Yu Xue, 2017		parameter	values.
			variation.	
			Efficiently handle	
			mixed data.	

FO 4	T1 V (1	Trans sta COM	T	
[24	Juha Vesanto and	Two stage SOM	Less computation	Valid only if SOM
	Esa Alhoniemi,	based clustering	cost, low noise,	cluster is same as
	2000	approach	less memory	input data.
			requirement.	Requires more time
				for training.
[25	Sueli A. Mingoti	SOM, Fuzzy c-	Fuzzy c-means	SOM method is not
	and Joab O.	means clustering	performs well	evaluated
	Lima, 2006	algorithm.	compared to other	completely.
			methods.	The comparison is
				restricted with
				overlapping and
				outliers parameters.
[26	Kashif Hussain	Generalised	Applicable for m-	Computation time
	Memon and	KWFLICM	dimensional input	and cost are high.
	Dong-HoLee,	algorithm	data.	
	2018	C	Suitable for	
			clusters having	
			different size and	
			density.	
			Maximum	
			efficiency of	
			94.55% is	
			achieved.	
[27	S. V. Vimala, K.	KLD-FCM	Improved	Time consuming.
	Vivekanandan,	clustering method	prediction.	
	2019	C	Low cost.	
[28	Hamidreza Koohi	User based	High accuracy.	No much
	and Kourosh	clustering based on	Less computation	improvement in
	Kiani, 2016	FCM approach.	time	precision and recall
		and Pearson		for average
		correlation		prediction type.
		coefficient.		1 71
L			1	

III. CONCLUSION

In this work a survey is made on numerous clustering techniques involved in recommendation system. The traditional efficient collaboration filtering methods are combined with clustering to enhance their performance. With the aid of technology, CR based recommendation techniques are replaced with machine learning based clustering technique. By analyzing a number of techniques, a comparative study is presented. Evaluation of traditional techniques is also neatly explained to

Webology (ISSN: 1735-188X) Volume 18, Number 6, 2021

identify the effective recommender system. By utilizing various modified clustering algorithms, more effective results are provided than the existing methods. The computational time, accuracy, recall, MSE and several other parameters are considered for comparing the proposed techniques. As clustering is the challenging task in movie recommendation system, sparsity and diversity have gained major significant. So an efficient technique which highlights the important criteria for the enhancement of clustering methodology is much needed.

REFERENCES

- [1] Reshma M Batule, Prof. Dr. Mrs.S.A.Itkar, "A Survey Paper on different Clustering techniques for Collaborative Filtering for services recommendation", International Journal of Computer Science and Information Technologies, Vol. 7 (3), 2016, 1410-1413
- [2] Mingjing Du, Shifei Ding, Hongjie Jia, "Study on Density Peaks Clustering Based on k-Nearest Neighbors and Principal Component Analysis", knowledge based system, Elsevier ISSN 0950-7051
- Bhagyashree Pathak, Niranjan Lal, "A Survey on Clustering Methods in Data Mining", International Journal of Computer Applications (0975 – 8887) Volume 159 No 2, February 2017
- [4] George Lakekos, Petros Caravelas, "A hybrid approach for movie recommendation", multimedia tool application, Springer, 2008
- [5] Eugene Seo and Ho-Jin Choi, "Movie Recommendation with K-Means Clustering and Self-Organizing Map Methods", International Conference on Agents and Artificial Intelligence, 2010
- [6] Sobia Zahra, Mustansar Ali Ghazanfar, Asra Khalid, Muhammad Awais Azam, Usman Naeem, Adam Prugel-Bennett, "Novel Centroid Selection Approaches for KMeans-Clustering Based Recommender Systems", Information Science, Elsevier, 2015
- [7] Mohammed Nazim uddin, Jenu Shrestha, Geun-Sik Jo, "Enhanced Content-based Filtering using Diverse Collaborative Prediction for Movie Recommendation" IEEE conference on Intelligent Information and Database Systems, 2009
- [8] Pei-pei, Pei-yu Liu, Ru Wang, Zhen-fang Zhu, "A Recommendation Algorithm Based on Density Peak Clustering and Key Users", International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, 2017
- [9] Shreya Agrawal, Pooja Jain, "International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)", 2017
- [10] Gilda Moradi Dakhel, Mehregan Mahdavi, "A New Collaborative Filtering Algorithm Using K-means Clustering and Neighbors' Voting, International Conference on Hybrid Intelligent Systems (HIS), 2011
- [11] Chih-Lun Liao, Shie-Jue Lee, "A Clustering Based Approach to Improving the Efficiency of Collaborative Filtering Recommendation", Electronic Commerce Research and Applications, Elsevier, 2016

- [12] Jinyin Chen, Yangyang Wu, Lu Fan, Xiang Lin, Haibin Zheng, Shanqing Yu, and Qi Xuan, "Improved Spectral Clustering Collaborative Filtering with Node2vec Technology", IEEE International Workshop on Complex Systems and Networks, 2017
- [13] Zhou Zhao, Qifan Yang, Hanqing Lu, Tim Weninger, Deng Cai, Xiaofei He and Yueting Zhuang, "Social-Aware Movie Recommendation via Multimodal Network Learning", IEEE Transactions on Multimedia, 2017
- [14] Siti Rofiqoh Fitriyani, Hendri Murfi, "The K-Means with Mini Batch Algorithm for Topics Detection on Online News", IEEE International Conference on Information and Communication Technologies, 2016
- [15] Donghui Yan, Yingjie Wang, Jin Wang, Guodong Wu, and Honggang Wang, "Fast Communication-efficient Spectral Clustering Over Distributed Data", IEEE Transactions on Big Data, 2018
- [16] Ali Feizollah, Nor Badrul Anuar, Rosli Salleh and Fairuz Amalina, "Comparative Study of K-means and Mini Batch K-means Clustering Algorithms in Android Malware Detection Using Network Traffic Analysis", IEEE International Symposium on Biometrics and Security Technologies, 2014
- [17] Jiang Wang, Cheng Zhu, Yun Zhou, Xianqiang Zhu, Yilin Wang and Weiming Zhang, "From Partition-Based Clustering to Density-Based Clustering: Fast Find Clusters With Diverse Shapes and Densities in Spatial Databases", IEEE access, 2018
- [18] Minh D. Nguyen and Won-Yong Shin, "An Improved Density based approach to Spatio-Textual clustering on social media", IEEE access, 2019
- [19] Samina Kausar, Xu Huahu, Iftikhar Hussain, Zhu Wenhao and Misha Zahid, "Integration of Data Mining Clustering Approach in the Personalized E-Learning System", IEEE access, 2018
- [20] Zheng Cao, Ming Zhu, "An Efficient Video Similarity Search Algorithm", IEEE Conference on Intelligent Computing and Intelligent Systems, 2010
- [21] Veena K.M, RadhikaM.Pai, "Clustering of web user's access patterns using a modified competitive agglomerative algorithm, International Conference on Advances in Computing, Communications and Informatics, 2017
- [22] S.Ephina Thendral and C.Valliyammai, "Clustering based transfer learning in cross domain recommendation system", IEEE International conference on advance computing, 2016.
- [23] Mingjing Du, Shifei Ding and Yu Xue, "A novel density peaks clustering algorithm for mixed data", Elsevier, Pattern Recognition Letters, 2017
- [24] Juha Vesanto and Esa Alhoniemi, "Clustering of the self- organizing map", IEEE Transaction on neural networks, Vol. 11, No. 12, 2000
- [25] Sueli A. Mingoti and Joab O. Lima, "Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms", Elsevier, Pattern Recognition Letters, 2006

- [26] Kashif Hussain Memon and Dong-HoLee, "Generalised kernel weighted fuzzy c-means clustering algorithm with local information", Elsevier, Fuzzy sets and systems, 2018
- [27] S. V. Vimala, K. Vivekanandan, "A Kullback–Leibler divergence-based fuzzy C-means clustering for enhancing the potential of an movie recommendation system", SN applied science, Springer, 2019
- [28] Hamidreza Koohi and Kourosh Kiani, "User Based Collaborative Filtering using Fuzzy C-Means", Elsevier, International measurement confederation, 2016